

Stuck on a problem in *Applied Mathematics*?

Have you tried ...

- ~ scaling arguments
- ! spotting a symmetry
- rotating the axes
- $\mathbf{x} \rightarrow \xi$ transforming the coordinates or variables
 - i using complex variables
 - \approx neglecting small terms
 - \leqslant finding upper or lower bounds
 - ✓ looking for self-consistency or contradiction
 - ε perturbing about equilibrium
 - \mathcal{L} linearizing the problem
- $d = 1$ studying the 1D case
- $x_i \mathbf{e}_i$ expanding in a basis
- \lim_x taking limits to 0 or ∞
- (\mathbf{k}, ω) going to Fourier space
 - \sum converting an integral to a sum
 - \int converting a sum to an integral
 - Λ cutting off the integral
- Δx discretizing the problem
- ∇ using a vector calculus identity
- δ using a Dirac delta function property
- C identifying conserved or invariant quantities
- \star looking for self-similarity
- $\frac{D\mathbf{u}}{Dt}$ switching between Eulerian and Lagrangian coordinates
- \mathbf{F} considering physical quantities such as force, momentum or energy
- v multiplying by an arbitrary test function
- Ω integrating over an arbitrary test domain
- \mathbb{R} reverse-engineering a solution
- $+0$ adding zero creatively
- $\times 1$ multiplying by one creatively