The following paragraphs serve as a brief introduction to some interesting, hopefully novel, research problems in convection and pattern formation that I am either currently investivating or interested in studying more in the future. For any queries, comments or interest in collaboration do not hesitate to email grp39@cam.ac.uk.
Porous Rayleigh-Bénard convection with a horizontally-heterogeneous permeability
After non-dimensionalisation, the problem of studying Rayleigh-Bénard convection in a hetereogenous porous rectangle can be formulated as the initial boundary value problem
\[\begin{split}
\begin{align*}
&\text{Find} \\
&c(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R}, \\
&\textbf{u}(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R}^2, \\
&p(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R} \\
&\text{where}~\Omega=[0,L]\times[0, 1] \\
&\text{and}~\textbf{x}=(x,y)\\
&\text{such that} \\
&\mathbb{IBVP}
\begin{cases}
\frac{\partial c}{\partial t} + \textbf{u}\cdot\nabla c = \frac{1}{Ra}\nabla^2c & \\
\nabla\cdot\textbf{u} = 0 & \\
\textbf{u}=-\mathsf{K}(\textbf{x})\cdot(\nabla p + c\,\textbf{e}_y) & \forall(\textbf{x}, t)\in\Omega\times[0,\infty) \\
c=1-y + \mathcal{N}(\textbf{x}) & \forall(\textbf{x}, t)\in\Omega\times\{0\} \\
c=1 & \forall(\textbf{x}, t)\in\{(x,y)\in\partial\Omega: y=0\} \times [0,\infty] \\
c=0 & \forall(\textbf{x}, t)\in\{(x,y)\in\partial\Omega: y=1\} \times [0,\infty] \\
\frac{\partial c}{\partial x} = 0 & \forall(\textbf{x}, t)\in\{(x,y)\in\partial\Omega: x=0, x=L\}
\times [0,\infty] \\
\textbf{n}\cdot\textbf{u} = 0 & \forall(\textbf{x}, t)\in\partial\Omega \times [0,\infty] \\
\end{cases}~.
\end{align*}
\end{split}\]
The fluid is assumed to be isoviscous and hence, in non-dimensional variables, has a temperature-independent unit viscosity, whilst its density has been taken has linearly decreasing in temperature such that \(\rho(c)=-c\) combines with the effect of gravity acting vertically in the negative \(y\)-direction to give the buoyancy term \(c\,\textbf{e}_y\) in Darcy’s law. As a simple of model of heterogeneity, we have assumed a decoupling of porosity from permeability such that the porosity is constant throughout the domain and a prescribed permeability \(\mathsf{K}(\textbf{x})\) is imposed, rather than prescribing a porosity \(\phi(\textbf{x})\) and a constitutive relation \(\mathsf{K}(\phi)\). With this approach only the permeability \(\mathsf{K}(\textbf{x})\) appears in the governing equations because the constant porosity is taken into the Rayleigh number
\[Ra=\frac{HK_{\text{ref}}\,g\Delta\rho}{\mu\phi D_{\text{mol}}}\]
formed as the ratio of convective to diffusive speeds. We wish to study the effect of an isotropic but horizontally-heterogeneous permeability
\[\begin{split}
\begin{align*}
\mathsf{K}(\textbf{x})&=K(x)\mathsf{I} \\
K(x)&=1 + \kappa\sin\left(\frac{j\pi x}{L}\right)
\end{align*}
\end{split}\]
where \(0\leq\kappa<1\) and \(j\in\{0, 1, 2, \dots\}\) are parameters characterising the amplitude and frequency of the horizontal permeability perturbation away from unity.
How is the onset of convection affected by \(\kappa, j\)?
How is the vertical flux scaling as a function of \(Ra\) affected by \(\kappa, j\)?
How is the plume structure affected by \(\kappa, j\)?
Porous convection from an internal point source
\[\begin{split}
\begin{align*}
&\text{Find} \\
&c(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R}, \\
&\textbf{u}(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R}^2, \\
&p(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R} \\
&\text{where}~\Omega=[0,1]\times[0, 1] \\
&\text{and}~\textbf{x}=(x,y)\\
&\text{such that} \\
&\mathbb{IBVP}
\begin{cases}
\frac{\partial c}{\partial t} + \textbf{u}\cdot\nabla c = \frac{1}{Ra}\nabla^2c + S(\textbf{x})& \\
\nabla\cdot\textbf{u} = 0 & \\
\textbf{u}=-\mathsf{K}(\textbf{x})\cdot(\nabla p + c\,\textbf{e}_y) & \forall(\textbf{x}, t)\in\Omega\times[0,\infty) \\
c=\mathcal{N}(\textbf{x}) & \forall(\textbf{x}, t)\in\Omega\times\{0\} \\
c=0 & \forall(\textbf{x}, t)\in\{(x,y)\in\partial\Omega: y=0, y=1\} \times [0,\infty] \\
\frac{\partial c}{\partial x} = 0 & \forall(\textbf{x}, t)\in\{(x,y)\in\partial\Omega: x=0, x=L\}
\times [0,\infty] \\
\textbf{n}\cdot\textbf{u} = 0 & \forall(\textbf{x}, t)\in\partial\Omega \times [0,\infty] \\
\end{cases}~.
\end{align*}
\end{split}\]
\[S(\textbf{x})=s\exp\left(-\frac{(x-\tfrac{1}{2})^2+(y-\tfrac{1}{2})^2}{\ell}\right)\]
How is the onset of convection affected by \(s, \ell\)?
How can we model the circulation pattern around the point source?