Poisson equation#
Strong form#
\[\begin{split}
\begin{align*}
&\text{Find}~u(\textbf{x}): \Omega \to \mathbb{R}~ \text{such that} \\
&\mathbb{BVP}\begin{cases}
\nabla^2 u = f & \forall\textbf{x}\in\Omega \\
u=u_{\text{D}} & \forall \textbf{x}\in\partial\Omega_{\text{D}} \\
\textbf{n}\cdot\nabla{u} = u_{\text{N}} & \forall\textbf{x}\in\partial\Omega_{\text{N}}=\partial\Omega/\partial\Omega_{\text{D}}
\end{cases} \\
&\text{given} \\
&\mathbb{S}
\begin{cases}
\Omega\subset\mathbb{R}^d \\
u_{\text{D}}(\textbf{x})~,~\partial\Omega_{\text{D}} & \text{Dirichlet boundary condition}\\
u_{\text{N}}(\textbf{x})~,~\partial\Omega_{\text{N}} & \text{Neumann boundary condition}\\
f(\textbf{x}) & \text{forcing}\\
\end{cases}
\end{align*}
\end{split}\]
Weak form#
\[\begin{split}
\begin{align*}
&\text{Find}~u\in V~\text{such that} \\
&F(u, v)=-\int_\Omega\text{d}\Omega~\nabla v\cdot\nabla u + vf + \int_{\partial\Omega_{\text{N}}}\text{d}\Gamma~vu_{\text{N}}=0\quad\forall v\in V~.
\end{align*}
\end{split}\]