Poisson equation

Poisson equation#

Strong form#

\[\begin{split} \begin{align*} &\text{Find}~u(\textbf{x}): \Omega \to \mathbb{R}~ \text{such that} \\ &\mathbb{BVP}\begin{cases} \nabla^2 u = f & \forall\textbf{x}\in\Omega \\ u=u_{\text{D}} & \forall \textbf{x}\in\partial\Omega_{\text{D}} \\ \textbf{n}\cdot\nabla{u} = u_{\text{N}} & \forall\textbf{x}\in\partial\Omega_{\text{N}}=\partial\Omega/\partial\Omega_{\text{D}} \end{cases} \\ &\text{given} \\ &\mathbb{S} \begin{cases} \Omega\subset\mathbb{R}^d \\ u_{\text{D}}(\textbf{x})~,~\partial\Omega_{\text{D}} & \text{Dirichlet boundary condition}\\ u_{\text{N}}(\textbf{x})~,~\partial\Omega_{\text{N}} & \text{Neumann boundary condition}\\ f(\textbf{x}) & \text{forcing}\\ \end{cases} \end{align*} \end{split}\]

Weak form#

\[\begin{split} \begin{align*} &\text{Find}~u\in V~\text{such that} \\ &F(u, v)=-\int_\Omega\text{d}\Omega~\nabla v\cdot\nabla u + vf + \int_{\partial\Omega_{\text{N}}}\text{d}\Gamma~vu_{\text{N}}=0\quad\forall v\in V~. \end{align*} \end{split}\]