Governing equations for thermosolutal convection coupled to Stokes flow.
Dimensional equations
\[\begin{split}
\begin{align*}
&\text{Find} \\
&c(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R}, \\
&\theta(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R}, \\
&\textbf{u}(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R}^d, \\
&p(\textbf{x}, t): \Omega\times[0, \infty) \to \mathbb{R} \\
&\text{such that} \\
&\begin{cases}
\frac{\partial c}{\partial t}+\textbf{u}\cdot\nabla c=\nabla\cdot(\mathsf{D}\cdot\nabla c) & \\
\frac{\partial\theta}{\partial t}+\textbf{u}\cdot\nabla\theta=\nabla\cdot(\mathsf{G}\cdot\nabla\theta) & \\
\nabla\cdot\textbf{u} = 0 & \\
\textbf{0}=-\nabla p + \nabla\cdot\tau + \rho g\,\textbf{e}_g & \forall(\textbf{x}, t)\in\Omega\times[0,\infty) \\
c(\textbf{x},t=0)=c_0 & \forall\textbf{x}\in\Omega \\
\theta(\textbf{x},t=0)=\theta_0 & \forall\textbf{x}\in\Omega \\
c=c_{\text{D}} & \forall(\textbf{x}, t)\in\partial\Omega_{\text{D}, c} \times [0,\infty] \\
\textbf{n}\cdot(\mathsf{D}\cdot\nabla c) = c_{\text{N}} & \forall(\textbf{x}, t)\in\partial\Omega_{\text{N}, c}
\times [0,\infty]~,~\partial\Omega_{\text{N}, c}=\partial\Omega/\partial\Omega_{\text{D}, c} \\
\theta=\theta_{\text{D}} & \forall (\textbf{x}, t)\in\partial\Omega_{\text{D}, \theta} \times [0,\infty] \\
\textbf{n}\cdot(\mathsf{G}\cdot\nabla \theta) = \theta_{\text{N}} & \forall(\textbf{x}, t)\in\partial\Omega_{\text{N}, \theta}
\times [0,\infty]~,~\partial\Omega_{\text{N}, \theta}=\partial\Omega/\partial\Omega_{\text{D}, \theta} \\
\textbf{u} = \textbf{u}_{\text{E}} & \forall(\textbf{x}, t)\in\partial\Omega_{\text{E}} \times [0,\infty] \\
(-p\mathsf{I}+\tau)\cdot\textbf{n} = \boldsymbol{\tau}_{\text{N}} & \forall(\textbf{x},t)\in\partial\Omega_{\text{N}}\times[0, \infty)~,~\partial\Omega_{\text{N}}=\partial\Omega/\partial\Omega_{\text{E}}
\end{cases} \\
&\text{given} \\
&\mathbb{S}\begin{cases}
\Omega\subset\mathbb{R}^d & \text{domain}\\
c_0(\textbf{x}) & \text{concentration initial condition}\\
\theta_0(\textbf{x}) & \text{temperature initial condition}\\
c_{\text{D}}(\textbf{x}, t)~,~\partial\Omega_{\text{D},c} & \text{concentration Dirichlet boundary condition} \\
\theta_{\text{D}}(\textbf{x}, t)~,~\partial\Omega_{\text{D},\theta} & \text{temperature Dirichlet boundary condition} \\
c_{\text{N}}(\textbf{x}, t)~,~\partial\Omega_{\text{N},c} & \text{concentration Neumann boundary condition} \\
\theta_{\text{N}}(\textbf{x}, t)~,~\partial\Omega_{\text{N}, \theta} & \text{concentration Neumann boundary condition} \\
\textbf{u}_{\text{E}}(\textbf{x}, t)~,~\partial\Omega_{\text{E}} & \text{velocity essential boundary condition} \\
\boldsymbol{\tau}_{\text{N}}(\textbf{x}, t)~,~\partial\Omega_{\text{N}} & \text{traction natural boundary condition} \\
\tau(\mu,\textbf{u}) & \text{deviatoric stress} \\
\mathsf{D}(\textbf{u}) & \text{solutal dispersion}\\
\mathsf{G}(\textbf{u}) & \text{thermal dispersion}\\
\rho(c, \theta) & \text{density}\\
\mu(c, \theta) & \text{viscosity}\\
\end{cases}
\end{align*}
\end{split}\]