DG steady advection-diffusion in an interval#
Donea, J. & Huerta, A. (2003). Finite Element Methods for Flow Problems. \(\S 2.6.2\)
\[\begin{split}
\mathbb{S}
\begin{cases}
\Omega = [0, 1] & \text{unit interval} \\
u_{\text{D}}(x=0,)=0 \\
u_{\text{D}}(x=1)=1 \\
\textbf{a}=a\,\textbf{e}_x \\
\mathsf{D}=D\mathsf{I} \\
R=0 \\
J=0 \\
u_{\text{e}}(x)=... \\
Pe= \frac{a}{2DN_x} & \text{local Peclet number} \\
\end{cases}
\end{split}\]
import numpy as np
from ufl.core.expr import Expr
from ufl import SpatialCoordinate, as_vector, cos, sqrt
from lucifex.mesh import rectangle_mesh
from lucifex.fem import Function, Constant
from lucifex.solver import bvp, BoundaryConditions, BoundaryValueProblem
from lucifex.viz import plot_colormap, plot_line, save_figure
from lucifex.utils import cross_section
from lucifex.pde.advection_diffusion import (
steady_advection_diffusion,
dg_steady_advection_diffusion
)