DG advection of a step in an interval

DG advection of a step in an interval#

Donea, J. & Huerta, A. (2003). Finite Element Methods for Flow Problems. \(\S 3.11.4\)

\[\begin{split} \mathbb{S} \begin{cases} \Omega = [0, L_x] \\ u_0(x)=\text{H}(x_0-x) \\ u_{\text{I}}(x=0) = 1 & \text{inflow on left boundary} \\ \textbf{a}=a\,\textbf{e}_x & \text{constant velocity} \\ u_{\text{e}}(x,t) = \text{H}(x_0 + at - x) & \text{exact solution} \\ \end{cases} \end{split}\]
import numpy as np
from lucifex.mesh import interval_mesh
from lucifex.fem import Constant
from lucifex.fdm import (CN, BE, FE,
    FiniteDifference, FunctionSeries, ConstantSeries,
    advective_timestep)
from lucifex.solver import ibvp , BoundaryConditions
from lucifex.sim import run, Simulation
from lucifex.viz import plot_line, save_figure
from lucifex.utils import nested_dict, is_continuous_lagrange, as_index
from lucifex.pde.advection import advection, dg_advection


def create_simulation(
    element: tuple[str, int],
    Lx: float,
    Nx: int,    
    dt: float,
    D_adv: FiniteDifference,
    u_in: float,
    x0: float,
    a: float,
) -> Simulation:
    mesh = interval_mesh(Lx, Nx)
    t = ConstantSeries(mesh, name='t', ics=0.0)
    dt = Constant(mesh, dt, name='dt')
    a = Constant(mesh, (a, ), name='a')
    u = FunctionSeries((mesh, *element), name='u', store=1)
    ics = lambda x: 1.0 * (x[0] <= x0) 
    bcs = BoundaryConditions(
        ('dirichlet', lambda x: x[0], u_in),
    )
    if is_continuous_lagrange(u.function_space):
        u_solver = ibvp(advection, ics, bcs)(u, dt, a, D_adv)
    else:
        u_solver = ibvp(dg_advection, ics)(u, dt, a, D_adv, bcs=bcs)
    return Simulation(u_solver, t, dt)


Lx = 1.0
Nx = 200
h = Lx / Nx
u_in = 1.0
x0 = 0.5 * Lx

a = 1.0
courant = 1.0
dt = advective_timestep(a, h, courant)

elem_opts = [
    ('DP', 0),
    ('DP', 1),
    ('P', 1),
]
D_adv_opts = (FE, BE, CN)
simulations = nested_dict((FiniteDifference, tuple, Simulation))

for elem in elem_opts:
    for D_adv in D_adv_opts:
        simulations[elem][D_adv] = create_simulation(elem, Lx, Nx, dt, D_adv, u_in, x0, a)

n_stop = 30
for elem in elem_opts:
    for D_adv in D_adv_opts:
        run(simulations[elem][D_adv], n_stop) 
def exact_solution(
    x: np.ndarray, 
    t: float, 
    a: float,
    x0: float
) -> np.ndarray:
    u = np.zeros_like(x)
    u[x < x0 + a * t] = 1.0 
    return u

x = np.linspace(0, Lx, num=500)
t_target = dt * 20
ue = exact_solution(x, t_target, a, x0)

for elem in elem_opts:
    fam, deg = elem
    lines = [(x, ue)]
    legend_labels = ['exact']
    legend_title = f'{fam}$_{deg}$\n$C_{{\mathbf{{a}}}}={{{courant}}}$\n\n$\mathcal{{D}}_{{\mathbf{{a}}, u}}$'
    for D_adv in D_adv_opts:
        u = simulations[elem][D_adv]['u']
        time_index = as_index(u.time_series, t_target, condition=lambda x, y: np.isclose(x, y))
        lines.append(u.series[time_index])
        legend_labels.append(f'{D_adv}')
    fig, ax = plot_line(lines, legend_labels, legend_title, x_lims=x, x_label='$x$', y_label=f'$u(x,t={t_target})$')
    ax.set_ylim(-0.05, 1.1)
    save_figure(f'u(x,t={t_target})_{fam}{deg}', thumbnail=(elem == ('DP', 0)))(fig)
../../_images/4677a9b6b617af7244060097e3953fa027dacadd553e1f35715cf570cf566b85.png ../../_images/bf88b8fe103216b165f5bc60340350974dda43c481dcfe3e65441b1272aa7efb.png ../../_images/5ba17c79488644b7983e11d408de739d1420789dfe398c112f769aafa1ccd4de.png