SUPG advection-diffusion of a rotating pulse in a rectangle

SUPG advection-diffusion of a rotating pulse in a rectangle#

Donea, J. & Huerta, A. (2003). Finite Element Methods for Flow Problems. \(\S 5.6.1\)

\[\begin{split} \mathbb{S} \begin{cases} \Omega = [0, 1] \times [0, 1] \\ u_0(x) = 0 \\ u_{\text{D}}=0 \\ \textbf{a} = \begin{pmatrix} -y \\ x \end{pmatrix} \\ \mathsf{D}=D\mathsf{I} \\ R = 0 \\ J(x,y,t) = e^{-t^{10}}\cos(\pi/2\sqrt{x^2+y^2})\text{H}(1-\sqrt{x^2+y^2})\\ \end{cases} \end{split}\]