Navier-Stokes convection equations#
Governing equations for thermosolutal convection coupled to Navier-Stokes flow, working in the Boussinesq approximation.
Dimensional equations#
Non-dimensionalization#
Scalings#
Quantity |
\(\vert\textbf{x}\vert\) |
\(\vert\textbf{u}\vert\) |
\(t\) |
\(c\) |
\(\theta\) |
\(\rho g\) |
\(p\) |
|---|---|---|---|---|---|---|---|
Scaling |
\(\mathcal{L}\) |
\(\mathcal{U}\) |
\(\mathcal{T}\) |
\(\Delta c\) |
\(\Delta\theta\) |
\(g \Delta\rho\) |
\(\mu_{\text{ref}}\,\mathcal{U}/\mathcal{L}\) |
\(\mu\) |
\(\vert\tau\vert\) |
\(\vert\mathsf{D}\vert\) |
\(\vert\mathsf{G}\vert\) |
|---|---|---|---|
\(\mu_{\text{ref}}\) |
\(\mu_{\text{ref}}\,\mathcal{U}/\mathcal{L}\) |
\(D_{\text{ref}}\) |
\(G_{\text{ref}}\) |
Abstract dimensionless numbers#
Physical dimensionless numbers#
Definition |
Name |
Physical interpretation |
|---|---|---|
\(Pr=\frac{\mu_{\text{ref}}}{\rho_{\text{ref}}D_{\text{ref}}}\) |
Prandtl |
Ratio of kinematic viscosity to diffusivity, defined with respect to the transport of \(c\) |
\(Ra=\frac{\mathcal{L}_\Omega^3g\Delta\rho}{\mu_{\text{ref}}D_{\text{ref}}}\) |
Rayleigh |
Ratio of convective to diffusive speeds, defined with respect to the transport of \(c\) and domain length scale. |
\(Le=\frac{G_{\text{ref}}}{D_{\text{ref}}}\) |
Lewis |
Ratio of thermal to solutal diffusivities. |
Scaling choice#
Name |
\(\mathcal{L}\) |
\(\mathcal{U}\) |
\( \mathcal{T}\) |
\(\{Ad, Di, Vi, Bu, X\}\) |
Examples |
|---|---|---|---|---|---|
advective |
\(\mathcal{L}_\Omega\) |
\(g\Delta\rho\mathcal{L}_\Omega^2/\mu_{\text{ref}}\) |
\(\mathcal{L}/\mathcal{U}\) |
\(\{1, 1/Ra, Pr/Ra, Pr/Ra, 1\}\) |
… |
diffusive |
\(\mathcal{L}_\Omega\) |
\(D_{\text{ref}}/\mathcal{L}\) |
\(\mathcal{L}/\mathcal{U}\) |
\(\{1, 1, Pr, PrRa, 1\}\) |
… |
Non-dimensional time-discretized equations#
Strong form#
Weak forms#
…