Mathieu equation#
Strong form#
\[\begin{split}
\begin{align*}
&\text{Find}~u(\textbf{x}): \Omega \to \mathbb{R}~\text{such that} \\
&\mathbb{EVP} | \mathbb{BVP}\begin{cases}
-\nabla^2u + 2q\cos(\textbf{k}\cdot\textbf{x}) u = \lambda u & \forall\textbf{x}\in\Omega \\
u=u_{\text{D}} & \forall \textbf{x}\in\partial\Omega_{\text{D}} \\
\textbf{n}\cdot\nabla{u} = u_{\text{N}} & \forall\textbf{x}\in\partial\Omega_{\text{N}}=\partial\Omega/\partial\Omega_{\text{D}}
\end{cases}~.
\end{align*}
\end{split}\]
Weak form#
\[\begin{split}
\begin{aligned}
& \partial\Omega_{\text{N}}=\varnothing \\
&\begin{align*}
\implies &\text{Find}~u\in V~\text{and}~\lambda\in\mathbb{C}~\text{such that}\\
&L(u, v)=\lambda R(u,v) \quad\forall v\in V \\
&\text{where }\\
&L(u, v) = \int_\Omega\text{d}\Omega~\nabla v\cdot\nabla u + 2q\cos(\textbf{k}\cdot\textbf{x}) vu\\
&R(u,v) = \int_\Omega\text{d}\Omega~vu \\
\end{align*}
\end{aligned}
\end{split}\]
\[\begin{split}
\begin{aligned}
& \partial\Omega_{\text{N}}\neq\varnothing \\
&\begin{align*}
\implies &\text{Find}~u\in V~\text{such that}\\
&F(u, v) = \dots
\end{align*}
\end{aligned}
\end{split}\]