Stokes equations#

Mixed formulation#

Strong form#

\[\begin{split} \begin{align*} &\text{Find}~\textbf{u}(\textbf{x}): \Omega \to \mathbb{R}^d~\text{and}~p(\textbf{x}): \Omega \to \mathbb{R}~\text{such that} \\ &\mathbb{BVP}_{\textbf{u}, p}\begin{cases} \nabla\cdot\textbf{u} = 0 & \\ \textbf{0}=-\nabla p + \nabla\cdot\tau + \textbf{f} & \forall\textbf{x}\in\Omega \\ \textbf{u} = \textbf{u}_{\text{E}} & \forall \textbf{x}\in\partial\Omega_{\text{E}} \\ (-p\mathsf{I}+\tau)\cdot\textbf{n} = \boldsymbol{\tau}_{\text{N}} & \forall\textbf{x}\in\partial\Omega_{\text{N}}=\partial\Omega/\partial\Omega_{\text{E}} \end{cases} \\ &\text{given} \\ &\mathbb{S}_{\textbf{u}, p} \begin{cases} \Omega & \text{domain}\\ \textbf{u}_{\text{E}}(\textbf{x})~,~\partial\Omega_{\text{E}} & \text{velocity essential boundary condition} \\ \boldsymbol{\tau}_{\text{N}}(\textbf{x})~,~\partial\Omega_{\text{N}} & \text{traction natural boundary condition} \\ \tau(\textbf{u}) & \text{deviatoric stress constitutive relation} \\ \textbf{f}(\textbf{x}) & \text{body force} \\ \end{cases} \end{align*} \end{split}\]

Weak form#

\[\begin{split} \begin{aligned} &\text{Find}~(\textbf{u}, p)\in V_{\textbf{u}} \times V_p~\text{such that} \\ &\begin{align*} F(\textbf{u}, p, \textbf{v}, q)&=\int_\Omega\text{d}\Omega~q(\nabla\cdot\textbf{u}) - p(\nabla\cdot\textbf{v}) + \nabla\textbf{v}:\tau - \textbf{v}\cdot\textbf{f} \\ &\quad -\int_{\partial\Omega_{\text{N}}}\text{d}\Gamma~\,\textbf{v}\cdot\boldsymbol{\tau}_{\text{N}} \\ &=0 \quad\forall(\textbf{v}, q)\in V_{\textbf{u}} \times V_p~. \end{align*} \end{aligned} \end{split}\]

Block structure#

\[\begin{split} \begin{align*} F_{\textbf{u}\textbf{u}}(\textbf{u}, \textbf{v}) + F_{\textbf{u}p}(p, \textbf{v}) &= 0 \quad\forall \textbf{v}\in V_{\textbf{u}} \\ F_{p\textbf{u}}(\textbf{u}, q) &= 0 \quad\forall q\in V_{p} \\ \end{align*} \implies \begin{pmatrix} \mathsf{A}_{\textbf{u}\textbf{u}} & \mathsf{A}_{\textbf{u}p} \\ \mathsf{A}_{p\textbf{u}} & \mathsf{0} \end{pmatrix} \begin{pmatrix} \textbf{U} \\ \textbf{P} \end{pmatrix} \begin{pmatrix} \textbf{b}_{\textbf{u}} \\ \textbf{b}_{p} \\ \end{pmatrix} \end{split}\]

Streamfunction formulation#

General definition#

\[\begin{split} \begin{align*} &\textbf{u}=\nabla\times\boldsymbol{\psi} \iff \nabla\cdot\textbf{u}=0 \\ &\text{and}~\tau(\textbf{u}) = \tfrac{1}{2}\left(\nabla\textbf{u} + \nabla\textbf{u}^{\mathsf{T}}\right) \\ &\implies\textbf{0}=\nabla^2(\nabla\times\boldsymbol{\psi}) + \nabla\times\textbf{f} \end{align*} \end{split}\]

Two-dimensional Cartesian definition#

\[\begin{split} \begin{align*} &\boldsymbol{\psi}=\psi\textbf{e}_z\implies\textbf{u}=\frac{\partial\psi}{\partial y}\textbf{e}_x - \frac{\partial\psi}{\partial x}\textbf{e}_y \\ &\textbf{f}=f_x\textbf{e}_x + f_y\textbf{e}_y \end{align*} \end{split}\]

Strong form#

\[\begin{split} \begin{align*} &\text{Find}~\psi(\textbf{x}): \Omega \to \mathbb{R}~\text{such that} \\ &\mathbb{BVP}_\psi\begin{cases} \nabla^2(\nabla^2\psi) = \frac{\partial f_y}{\partial x}- \frac{\partial f_x}{\partial y} & \forall\textbf{x}\in\Omega \\ \psi=\psi_{\text{D}} & \forall \textbf{x}\in\partial\Omega \\ \nabla^2\psi=\psi_{\text{L}} & \forall \textbf{x}\in\partial\Omega \end{cases}~. \end{align*} \end{split}\]

Weak form#

\[\begin{split} \begin{aligned} &\text{Find}~\psi\in V~\text{such that} \\ &\begin{align*} F(\psi, v) &= \int_\Omega\text{d}\Omega~\nabla^2v \nabla^2u - v\frac{\partial f_y}{\partial x} + v\frac{\partial f_x}{\partial y} \\ &\quad + \int_{\mathcal{F}}\text{d}\Gamma~\frac{\alpha}{h(\textbf{x})}\left[\!\left[\nabla v\right]\!\right]\left[\!\left[\nabla u\right]\!\right] - \left[\!\left[\nabla v\right]\!\right]\langle\nabla^2u\rangle - \langle\nabla^2v\rangle\left[\!\left[\nabla u\right]\!\right] \\ &=0\quad\forall v\in V~. \end{align*} \\ &\text{where}~\alpha\in\mathbb{R}~\text{is a penalty parameter and}~h(\textbf{x})~\text{is the local mesh cell size.} \end{aligned} \end{split}\]