Darcy convection equations#
Governing equations for thermosolutal convection-reaction coupled to Darcy flow.
Dimensional equations#
Non-dimensionalization#
Scalings#
Quantity |
\(\vert\textbf{x}\vert\) |
\(\vert\textbf{u}\vert\) |
\(t\) |
\(c\) |
\(\theta\) |
\(\rho g\) |
\(p\) |
\(\psi\) |
|---|---|---|---|---|---|---|---|---|
Scaling |
\(\mathcal{L}\) |
\(\mathcal{U}\) |
\(\mathcal{T}\) |
\(\Delta c\) |
\(\Delta\theta\) |
\(g \Delta\rho\) |
\(\mu_{\text{ref}}\,\mathcal{U}\mathcal{L}/K_{\text{ref}}\) |
\(\mathcal{U}\mathcal{L}\) |
\(\mu\) |
\(\phi\) |
\(K\) |
\(\vert\mathsf{D}\vert\) |
\(\vert\mathsf{G}\vert\) |
\(R\) |
\(H\) |
|---|---|---|---|---|---|---|
\(\mu_{\text{ref}}\) |
\(\phi_{\text{ref}}\) |
\(K_{\text{ref}}\) |
\(D_{\text{ref}}\) |
\(G_{\text{ref}}\) |
\(\Delta R\) |
\(\Delta H\) |
Abstract dimensionless numbers#
Physical dimensionless numbers#
Definition |
Name |
Physical interpretation |
|---|---|---|
\(Ra=\frac{\mathcal{L}_\Omega K_{\text{ref}}g\Delta\rho}{\mu_{\text{ref}}D_{\text{ref}}}=\underbrace{\frac{K_{\text{ref}}\,g\Delta\rho}{\mu_{\text{ref}}}}_{\text{convective speed}} \big/ \underbrace{\frac{D_{\text{ref}}}{\mathcal{L}_\Omega}}_{\text{diffusive speed}}\) |
Rayleigh |
Ratio of convective to diffusive speeds, defined with respect to the transport of \(c\) and domain length scale. |
\(Da=\frac{\mathcal{L}_\Omega \mu_{\text{ref}}\,\Delta R}{K_{\text{ref}}\,g\Delta\rho\Delta c} = \underbrace{\frac{\Delta R}{\Delta c}}_{\text{reaction rate}} \big/ \underbrace{\frac{K_{\text{ref}}\,g\Delta\rho}{\mathcal{L}_\Omega \mu_{\text{ref}}}}_{\text{convection rate}}\) |
Damköhler |
Ratio of reaction to convection rates, defined with respect to the transport of \(c\) and domain length scale. |
\(Le=\frac{G_{\text{ref}}}{D_{\text{ref}}}\) |
Lewis |
Ratio of thermal to solutal diffusivities. |
\(Lr=\frac{\Delta H\Delta c}{\Delta\theta \Delta R} = \underbrace{\frac{\Delta H}{\Delta\theta}}_{\text{thermal reaction rate}} \big/ \underbrace{\frac{\Delta R}{\Delta c}}_{\text{solutal reaction rate}}\) |
Lerwis |
Ratio of thermal to solutal reaction rates. |
Scaling choice#
Name |
\(\mathcal{L}\) |
\(\mathcal{U}\) |
\( \mathcal{T}\) |
\(\{Ad, Di, Ki, Bu, X\}\) |
Examples |
|---|---|---|---|---|---|
advective |
\(\mathcal{L}_\Omega\) |
\(K_{\text{ref}}\,g\Delta\rho/\mu_{\text{ref}}\) |
\(\phi_{\text{ref}}\mathcal{L}/\mathcal{U}\) |
\(\{1, 1/Ra, Da, 1, 1\}\) |
|
diffusive |
\(\mathcal{L}_\Omega\) |
\(D_{\text{ref}}/\mathcal{L}\) |
\(\phi_{\text{ref}}\mathcal{L}/\mathcal{U}\) |
\(\{1, 1, RaDa, Ra, 1\}\) |
|
advective-diffusive |
\(D_{\text{ref}}/\mathcal{U}\) |
\(K_{\text{ref}}\,g\Delta\rho/\mu_{\text{ref}}\) |
\(\phi_{\text{ref}}\mathcal{L}/\mathcal{U}\) |
\(\{1, 1, Da/Ra, 1, Ra\}\) |
|
reactive |
\(\sqrt{D_{\text{ref}}\mathcal{T}/\phi_{\text{ref}}}\) |
\(\phi_{\text{ref}}\mathcal{L}/\mathcal{T}\) |
\(\phi_{\text{ref}}\Delta c/\Delta R\) |
\(\{1, 1, 1, \sqrt{Ra/Da}, \sqrt{RaDa}\}\) |