Helmholtz equation

Helmholtz equation#

Strong form#

\[\begin{split} \begin{align*} &\text{Find}~u(\textbf{x}): \Omega \to \mathbb{R}~\text{such that} \\ &\mathbb{EVP} | \mathbb{BVP}\begin{cases} \nabla^2 u + k^2 u = f & \forall\textbf{x}\in\Omega \\ u=u_{\text{D}} & \forall \textbf{x}\in\partial\Omega_{\text{D}} \\ \textbf{n}\cdot\nabla{u} = u_{\text{N}} & \forall\textbf{x}\in\partial\Omega_{\text{N}}=\partial\Omega/\partial\Omega_{\text{D}} \end{cases}~. \end{align*} \end{split}\]

Weak form#

\[\begin{split} \begin{aligned} & f=0~\text{and}~\partial\Omega_{\text{N}}=\varnothing \\ &\begin{align*} \implies &\text{Find}~u\in V~\text{and}~\lambda\in\mathbb{C}~\text{such that}\\ &L(u, v)=\lambda R(u,v) \quad\forall v\in V \\ &\text{where }\\ &L(u, v) = \int_\Omega\text{d}\Omega~\nabla v\cdot\nabla u \\ &R(u,v) = \int_\Omega\text{d}\Omega~vu \\ &\lambda = k^2 \end{align*} \end{aligned} \end{split}\]
\[\begin{split} \begin{aligned} & f\neq0~\text{or}~\partial\Omega_{\text{N}}\neq\varnothing \\ &\begin{align*} \implies& \text{Find}~u\in V~\text{such that} \\ &F(u, v)=\int_\Omega\text{d}\Omega~-\nabla v\cdot\nabla u + k^2vu - vf + \int_{\partial\Omega_{\text{N}}}\text{d}\Gamma~vu_{\text{N}}=0\quad\forall v\in V~. \end{align*} \end{aligned} \end{split}\]