Diffusion equation#
Strong form#
\[\begin{split}
\begin{align*}
&\text{Find}~u(\textbf{x}, t): \Omega\times[0,\infty) \to \mathbb{R}~\text{such that } \\
&\mathbb{IBVP}\begin{cases}
\frac{\partial u}{\partial t} = \nabla\cdot(\mathsf{D}\cdot\nabla u) & \forall(\textbf{x}, t)\in\Omega\times[0,\infty) \\
u=u_0 & \forall(\textbf{x},t)\in\Omega\times\{0\}\\
u=u_{\text{D}} & \forall(\textbf{x},t)\in\partial\Omega_{\text{D}}\times[0,\infty) \\
\textbf{n}\cdot(\mathsf{D}\cdot\nabla{u}) = u_{\text{N}} & \forall(\textbf{x},t)\in\partial\Omega_{\text{N}}\times[0,\infty)~,~\partial\Omega_{\text{N}}=\partial\Omega/\partial\Omega_{\text{D}}
\end{cases} \\
&\text{given} \\
&\mathbb{S}\begin{cases}
\Omega\subset\mathbb{R}^d \\
u_0(\textbf{x}) & \text{initial condition} \\
u_{\text{D}}(\textbf{x}, t)~,~\partial\Omega_{\text{D}} & \text{Dirichlet boundary condition}\\
u_{\text{N}}(\textbf{x}, t)~,~\partial\Omega_{\text{N}} & \text{Neumann boundary condition}\\
\mathsf{D}(\textbf{x}, t) & \text{dispersion} \\
\end{cases}
\end{align*}
\end{split}\]
Weak form#
\[\begin{split}
\begin{align*}
&\text{Find}~u^{n+1}\in V~\text{such that} \\
&F(u^{n+1}, v)=\int_\Omega\text{d}\Omega~v\frac{u^{n+1} - u^n}{\Delta t^n} + \nabla v\cdot\mathcal{D}_{\mathsf{D},u}(\mathsf{D}\cdot\nabla u) - \int_{\partial\Omega_{\text{N}}}\text{d}\Gamma~vu_{\text{N}}=0 \quad\forall v\in V~.
\end{align*}
\end{split}\]